UNIQUENESS OF THE SOLUTION OF A BOUNDARY VALUE PROBLEM FOR A NONCLASSICAL PARABOLIC-TYPE EQUATION
Main Article Content
Abstract
This paper investigates the uniqueness of the solution to a boundary value problem for a nonclassical parabolic-type differential equation. The problem is considered in a general form, and through appropriate substitutions the equation is simplified and formulated in a given domain with specified boundary conditions. The uniqueness of the solution is proved using the energy integral method, and it is shown that the corresponding homogeneous problem admits only the trivial solution. The obtained results are of significant importance in the theory of equations of mathematical physics and can be applied to the study of nonclassical boundary value problems.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
How to Cite
References
1. Михлин С.Г. Многомерные сингулярные интегралы и интегральные уравнения. – М.: Физматгиз, 1962. – 256 c.
2. Михлин С.Г. Линейные уравнения в частных производных. – М.: Высшая школа, 1977. – 432 с.
3. Владимиров В. С. Уравнения математической физики. – М.: Наука, 1967.
4. Никольский С.М. Приближение функций многих переменных и теоремы вложения. - М.: Наука, 1977. – 456 с.
5. Требель Х. Теория интерполяции функциональные пространства дифференциальные операторы. – М.: Мир, 1978. – 664 с.
6. Зигмунд А. Тригонометрические ряды. В 2–х т. – М.: Мир, 1965. Т.2.
7. Хилле Э., Филлипс Р.С. Функциональный анализ и полугруппы. ИЛ. 1963.
8. Данфорд Н. и Шварц Дж.Т. Линейные операторы. Общая теория, ИЛ. 1963.
9. Крейн С.Г. Линейные дифференциальные уравнения в банаховом пространстве. - М.: Наука, 1967. – 464 с.
10.об одном классе решений системы дифференциальных уравнений второго порядка в комплексной плоскости“o„quvchi- faoliyatini rivojlantirish kontekstida innovatsion ta‟lim texnologiyalaridan fanlararo sinxron-asinxron foydalanish” Хalqaro ilmiy-amaliy konferensiya to„plami Denov, 2023 yil 29-30 sentyabr. -tezis, 2023-yil.
11. применение теории полугрупп к исследованию дифференциальных уравнений в пространствах банаха abstracts of the conference of young scientists mathematics, mechanics and intellectual technologies tashkent-2022. -tezis, 2022-yil.
12.karrali xarakteristikali uchinchi tartibli tenglama uchun chegaraviy masala haqida. Qarshi davlat universiteti Amaliy matematika kafedrasi amaliy matematikaning zamonaviymuammolari va istiqbollari ilmiy-amaliy konferensiya dasturi 24-25-may,2024
13.Abdurashidov Nuriddin, Tog‟ayev Turdimurod, Rustamov Bilol, Eshtemirov Eshtemir “Equation of the Result of Second-Order Surfaces” EXCELLENCIA: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF EDUCATION https://multijournals.org/index.php/excellencia-imje
14.Abdurashidov Nuriddin G„iyoziddin o’g’li ,Tog’ayev Turdimurod Xurram o’g’li,Rustamov Bilol Muxbiddinovich. “Laplas tenglamasining fundamental yechimi” . “So‟ngi ilmiy tadqiqotlar nazariyasi” Ilmiy-uslubiy jurnali. 13-iyun 2024- yil 7-jild 6-son (33-37).
15. Rustamov Bilol, Baltabayeva Saida, Choriyeva Munira, Normo’minova Charos ‟‟ Diskret tasodifiy miqdorning sonli xarakteristikalari”.”O‘zbekistonda fanlararo innovatsiyalar va ilmiy tadqiqotlar ” 20-fevral 2025- yil 37-son (292-297).
16.B.M.Rustamov, N.G‘.Abdurashidov, Sh.Ashirov, A.Saitniyozov. “” International Journal of Education, Social Science & Humanities. Finland Academic Research Science Publishers 369-372-bet 22-02-2025.
17.Abdurashidov Nuriddin, Tog’ayev Turdimurod, Rustamov Bilol, Eshtemirov Eshtemir “Equation of the Result of Second-Order Surfaces” excellencia: international multi-disciplinary journal of education https://multijournals.org/index.php/excellencia-imje
18.Symmetric Leibniz algebras and their properties Abdurashidov N., Tog‘ayev T., Rustamov B., Eshtemirov E. “Zamonaviy analiz va matematik fizika masalalari 320-bet