DYNAMIC PROPERTIES OF A TOROIDAL SHELL WITH FLOWING INTERNAL FLUID

Main Article Content

Esanov Nuriddin Qurbonovich

Abstract

This paper investigates the dynamics of curved segments of large-diameter thin-walled pipelines modeled as a portion of a toroidal shell conveying an ideal incompressible fluid. Based on the Kirchhoff-Love hypothesis and the relations of the semi-membrane (semi-momentless) shell theory, the equations of motion are derived in toroidal curvilinear coordinates taking into account inertia forces and internal pressure. The pressure acting on the pipe wall is represented as the sum of a constant hydrostatic component and a hydrodynamic component of the flow, expressed via Legendre functions. The solution is obtained by expanding the displacement field in beam-type (fundamental) functions that satisfy the boundary conditions and the cyclicity requirement, reducing the problem to an eigenvalue problem for a matrix whose eigenvalues correspond to the squares of the natural frequencies. The influence of flow velocity, segment curvature, and the shell’s relative thickness on the natural frequencies of bending vibrations is analyzed. It is shown that within the range of practical flow velocities the effect of velocity on the natural frequencies is small, whereas increasing curvature and relative thickness leads to higher natural frequencies; for certain velocity values, frequency minima may occur, associated with increased forces and deformations.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

DYNAMIC PROPERTIES OF A TOROIDAL SHELL WITH FLOWING INTERNAL FLUID. (2026). Journal of Multidisciplinary Sciences and Innovations, 5(01), 328-333. https://doi.org/10.55640/

References

1.Авлиякулов Н.Н., Сафаров И.И. Современные задачи статики и динамики подземных трубопроводов. Ташкент, Fan va texnologiya. 2007. 306 с.// Avliyaqulov N.N., Safarov I.I. Modern Problems of Statics and Dynamics of Underground Pipelines. Tashkent, Fan va texnologiya. 2007. 306 p.

2.Айнбиндер А. Б., Камерштейн А. Г. Расчет магистральных трубопроводов на прочность и устойчивость: справочное пособие. М.: Недра, 1982. 341 с.// Aynbinder A. B., Kamerstein A. G. Calculation of Main Pipelines for Strength and Stability: A Reference Guide. M.: Nedra, 1982. 341 p.

3.Аксельрад Э. А., Ильин В. П. Расчет трубопроводов. Л.: Изд-во Машиностроение, 1972. 240 с. // Akselrad E. A., Ilyin V. P. Calculation of Pipelines. L.: Mashinostroyeniye Publishing House, 1972. 240 p.

4.Вольмир А.С. Оболочки в потоке жидкости и газа: Задачи гидроупругости.- М.: Наука, 1979.-320 с.// Volmir A.S. Coatings in the Flow of Liquid and Gas: Problems of Hydroelasticity.- M.: Science, 1979.-320 p.

5.Сафаров И.И., Тешаев М.Х.Эсанов Н.Қ., Ҳамроева З.Қ. “Математическое моделирование собственных и вынужденных колебаний криволинейных труб, взаимодействующих со средой. Тошкент, ФАН, 2009.-161б.// Safarov I.I., Teshayev M.Kh. Esanov N.K., Hamroyeva Z.K. "Mathematical modeling of natural and forced vibrations of curvilinear pipes interacting with the medium." Tashkent, FAN, 2009.-161p.

6.Бозоров М.Б., Сафаров И.И., Шокин Ю.И. Численное моделирование колебаний диссипативно однородных и неоднородных механических систем. СО РАН, Новосибирск, 1966.- 188с.// Bozorov M.B., Safarov I.I., Shokin Yu.I. Numerical modeling of oscillations of dissipatively homogeneous and inhomogeneous mechanical systems. SO RAN, Novosibirsk, 1966.- 188p.

7.М.Х.Тешаев, М.Ш.Ахмедов, З.К.Хамраева. Определение гидродинамического давления на стенку трубы, вызванного потоком жидкости.2014, Май. Материалы X Международной конференции по Неравновесным процессам. Москва, 25-31 мая 2014 г.-С.428-430.// M.Kh.Teshayev, M.Sh.Akhmedov, Z.K.Khamrayeva. Determination of hydrodynamic pressure on the pipe wall caused by the flow of liquid.2014, May. Proceedings of the X International Conference on Non-equilibrium Processes. Moscow, May 25-31, 2014.-P.428-430.

8.Муштари Х. М., Галимов К. З. Нелинейная теория упругих оболочек. Казань: Таткнигиздат, 1957. 351с.// Mushtari H. M., Galimov K. Z. Nonlinear theory of elastic shells. Kazan: Tatknigizdat, 1957. 351p.

9.Светлицкий В.А. Механика трубопроводов и шлангов: Задачи взаимодействия стержней с потоком жидкости или воздуха.- М.: Машиностроение, 1982.- 280 с.// Svetlitskiy V.A. Mechanics of Pipelines and Shlanges: Problems of Interaction of Rods with a Flow of Liquid or Air.- M.: Mashinostroenie, 1982.- 280 p.

Similar Articles

You may also start an advanced similarity search for this article.