EVALUATION OF THE BINDING AFFINITY OF 3,5-DI-O-CAFFEOYLQUINIC ACID AND CYNARIN TO CAV1.2 CHANNELS USING VIRTUAL MODELING
Main Article Content
Abstract
L-type calcium channels (CaV1.2) play a central role in regulating calcium influx and vascular tone. In this study, the interactions of 3,5-di-O-caffeoylquinic acid and cynarin with the L-type calcium channel were investigated using molecular docking analysis. Both compounds exhibited significant binding affinities, forming multiple hydrogen bonds, hydrophobic interactions, and electrostatic contacts with key residues within the channel’s binding pocket. The binding energies and inhibition constants indicated strong inhibitory potential, with 3,5-di-O-caffeoylquinic acid demonstrating a higher affinity than cynarin. These results provide a molecular basis for the potential modulatory effects of these natural compounds on L-type calcium channel activity and highlight their promise as candidates for further exploration in cardiovascular therapeutics.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
How to Cite
References
1.Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019 Sep 4;20(18):4331. doi: 10.3390/ijms20184331. PMID: 31487867; PMCID: PMC6769923.
2.Lee A, Lee K, Kim D. Using reverse docking for target identification and its applications for drug discovery. Expert Opin Drug Discov. 2016 Jul;11(7):707-15. doi: 10.1080/17460441.2016.1190706. Epub 2016 Jun 1. PMID: 27186904.
3.Morency LP, Gaudreault F, Najmanovich R. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design. Methods Mol Biol. 2018;1762:367-388. doi: 10.1007/978-1-4939-7756-7_18. PMID: 29594781.
4.Śledź P, Caflisch A. Protein structure-based drug design: from docking to molecular dynamics. Curr Opin Struct Biol. 2018 Feb;48:93-102. doi: 10.1016/j.sbi.2017.10.010. Epub 2017 Nov 14. PMID: 29149726.
5.Mora Lagares L, Novič M. Recent Advances on P-Glycoprotein (ABCB1) Transporter Modelling with In Silico Methods. Int J Mol Sci. 2022 Nov 26;23(23):14804. doi: 10.3390/ijms232314804. PMID: 36499131; PMCID: PMC9740644.
6.Ou-Yang S.-S., Lu J.-Y., Kong X.-Q., Liang Z.-J., Luo C., Jiang H. Computational drug discovery. Acta Pharmacol. Sin. 2012;33:1131–1140. doi: 10.1038/aps.2012.109.
7.Chai A.B., Hartz A.M., Gao X., Yang A., Callaghan R., Gelissen I.C. New evidence for P-gp-mediated export of amyloid-β PEPTIDES in molecular, blood-brain barrier and neuronal models. Int. J. Mol. Sci. 2020;22:246. doi: 10.3390/ijms22010246.
8.Yang F, Zheng J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. 2017 Mar;8(3):169-177. doi: 10.1007/s13238-016-0353-7. Epub 2017 Jan 2. PMID: 28044278; PMCID: PMC5326624.
9.Yang F, Vu S, Yarov-Yarovoy V, Zheng J. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3657-66. doi: 10.1073/pnas.1604180113. Epub 2016 Jun 13. PMID: 27298359; PMCID: PMC4932969.
10.Elokely K, Velisetty P, Delemotte L, Palovcak E, Klein ML, Rohacs T, Carnevale V. Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E137-45.
doi: 10.1073/pnas.1517288113. Epub 2015 Dec 30. PMID: 26719417; PMCID: PMC4720335.
11.Conway SJ. TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1. Chem Soc Rev. 2008 Aug;37(8):1530-45. doi: 10.1039/b610226n. Epub 2008 Jun 20. PMID: 18648679.
12.Lee JH, Lee Y, Ryu H, Kang DW, Lee J, Lazar J, Pearce LV, Pavlyukovets VA, Blumberg PM, Choi S. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies. J Comput Aided Mol Des. 2011 Apr;25(4):317-27. doi: 10.1007/s10822-011-9421-5. Epub 2011 Mar 30. PMID: 21448716; PMCID: PMC3420359.
13.Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37. doi: 10.1002/cpbi.3. PMID: 27322406; PMCID: PMC5031415.
14.Safapour S, Sabbaghi-Nadooshan R, Razaghian F, Shokri A. Modeling of molecular ternary logic gates and circuits based on diode structures. J Mol Model. 2022 Apr 25;28(5):130. doi: 10.1007/s00894-022-05118-7. PMID: 35469068.
15.Huang X, Liang Y, Ye Q, Ding Z, Liu F, Shi Z. Theoretical modeling of molecular fractionation of dissolved organic matter on ferrihydrite and its impact on proton and metal binding properties. Sci Total Environ. 2023 Aug 25;888:164276. doi: 10.1016/j.scitotenv.2023.164276. Epub 2023 May 19. PMID: 37209735.
16.Ozvoldik K, Stockner T, Krieger E. YASARA Model-Interactive Molecular Modeling from Two Dimensions to Virtual Realities. J Chem Inf Model. 2023 Oct 23;63(20):6177-6182. doi: 10.1021/acs.jcim.3c01136. Epub 2023 Oct 2. PMID: 37782001; PMCID: PMC10598798.
17.Fatoki TH, Balogun TC, Ojewuyi AE, Omole AC, Olukayode OV, Adewumi AP, Umesi AJ, Ijeoma NP, Apooyin AE, Chinedu CP, Idowu IE, Isah MJ. In silico molecular targets, docking, dynamics simulation and physiologically based pharmacokinetics modeling of oritavancin. BMC Pharmacol Toxicol. 2024 Oct 22;25(1):79. doi: 10.1186/s40360-024-00804-z. PMID: 39439008; PMCID: PMC11520145.