BUSINESS INSOLVENCY PREDICTION MODELS: A COMPARATIVE ANALYSIS OF MULTIVARIATE DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION

Main Article Content

Olimjonova Munisa Nuriddin kizi

Abstract

This study looks at predictive approaches that use logistic regression and multivariate discriminant analysis (MDA) to evaluate a company's insolvency. The Z-Score model developed by Edward Altman and William Beaver is the main focus of this historical review of bankruptcy prediction techniques. The use of a binary logistic regression model to assess the importance of individual financial ratios in predicting a company's bankruptcy risk is also covered in the paper. According to the results, MDA and logistic regression provide strong frameworks for comprehending the financial health of businesses, with applications in risk management and decision-making. To preserve accuracy and relevance in a changing economic environment, the study does stress the necessity of constant validation and adaptation.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

BUSINESS INSOLVENCY PREDICTION MODELS: A COMPARATIVE ANALYSIS OF MULTIVARIATE DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION. (2025). Journal of Multidisciplinary Sciences and Innovations, 4(5), 503-511. https://doi.org/10.55640/

References

1.Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609.

2.Altman, E. I., & Hotchkiss, E. (2010). Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt (Vol. 289). John Wiley & Sons.

3.Altman, E. I., Iwanicz‐Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z‐score model. Journal of international financial management & accounting, 28(2), 131-171.

4.Amat, O., Manini, R., & Renart, M. A. (2017). Credit concession through credit scoring: Analysis and application proposal. Intangible Capital, 13(1), 51-70.

5.Amat, O. (2008). Análisis de estados financieros: 8a Edición. Grupo Planeta (GBS).

6.Burkhanov, A. U., Kurbonbekova, M. T., Usmonov, B., & Nizomiddinov, J. Z. (2024). Assessment of the Financial Sustainability of Enterprises: The Case of Uzbekistan. In Development of International Entrepreneurship Based on Corporate Accounting and Reporting According to IFRS (Vol. 33, pp. 215-223). Emerald Publishing Limited.

7.Vivar-Arrieta, M. A., Haro-Altamirano, J. P., Carrillo Barahona, W. E., López Sampedro, S. E., Usmanovich, B. A., Usmonov, B., & Ulugbek Kizi, M. S. (2023). Multicriteria evaluation of ancestral family agricultural systems, Chimborazo Province, Ecuador. Caspian Journal of Environmental Sciences, 21(5), 1123-1134.

8.Usmonov, B. (2022, December). The impact of the financial ratios on the financial performance. A case of Chevron Corporation (CVX). In International Conference on Next Generation Wired/Wireless Networking (pp. 333-344). Cham: Springer Nature Switzerland.

9.Código de Comercio. (1885). Libro IV. De las suspensiones de pagos, de las quiebras y de las prescripciones.

10.Fitó-Bertran, À., Plana-Erta, D., & Llobet Dalmases, J. (2018). Usefulness of Z scoring models in the early detection of financial problems in bankrupt Spanish companies.

11.López-Roldán, P., & Fachelli, S. (2015, February). Metodología de la investigación social cuantitativa.

12.Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics (No. 3). Cambridge university press.

13.Stock, J. H., Watson, M. W., & Larrión, R. S. (2012). Introducción a la Econometría.

14.Marchese, M. (2014). Entrepreneurial Activities in Europe-Finance for Inclusive Entrepreneurship.

15.Huo, Y., Chan, L. H., & Miller, D. (2024). Bankruptcy prediction for restaurant firms: A comparative analysis of multiple discriminant analysis and logistic regression. Journal of Risk and Financial Management, 17(9), 399.

16.Michalkova, L., & Ponisciakova, O. (2025). Bankruptcy Prediction, Financial Distress and Corporate Life Cycle: Case Study of Central European Enterprises. Administrative Sciences, 15(2), 63.

17.Navarro-Galera, A., Lara-Rubio, J., Novoa-Hernández, P., & Cruz Corona, C. A. (2025). Using Decision Trees to Predict Insolvency in Spanish SMEs: Is Early Warning Possible?. Computational Economics, 65(1), 91-116.

18.Matenda, F. R., Sibanda, M., Chikodza, E., & Gumbo, V. (2021). Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research. Management Review Quarterly, 1-40.

Similar Articles

You may also start an advanced similarity search for this article.