REMOTE SENSING EVALUATION OF CLIMATIC FACTORS INFLUENCING AGRICULTURAL CROP GROWTH IN THE BUKHARA REGION

Main Article Content

Nozimjon Teshaev Nusratovich, Bobomurod Makhsudov Yuldoshovich

Abstract

 This research examines how key climatic variables influence cotton crop development through remote sensing data analysis. The study, conducted in the Bukhara region, explores the relationships between vegetation indices (NDVI, EVI, MNDWI, SAVI) and climatic parameters such as land surface temperature, air temperature, precipitation, solar radiation, and reference evapotranspiration (ET₀). Pearson correlation analysis revealed that crop growth had significant negative correlations with air temperature and evapotranspiration, whereas precipitation and solar radiation were positively correlated with vegetation indices. The findings demonstrate the potential of combining remote sensing and climatic data for effective crop monitoring and yield prediction in arid regions.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

REMOTE SENSING EVALUATION OF CLIMATIC FACTORS INFLUENCING AGRICULTURAL CROP GROWTH IN THE BUKHARA REGION. (2025). Journal of Multidisciplinary Sciences and Innovations, 4(9), 1752-1756. https://doi.org/10.55640/

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations.

2. Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120. https://doi.org/10.1080/02757259509532298

3. Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., ... & Schmaltz, J. (2010). Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project. Remote Sensing, 2(6), 1589–1609. https://doi.org/10.3390/rs2061589

4. Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84. https://doi.org/10.1016/j.agrformet.2013.01.007

5. Dorigo, W. A., Zurita-Milla, R., de Wit, A. J. W., Brazile, J., Singh, R., & Schaepman, M. E. (2007). A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. International Journal of Applied Earth Observation and Geoinformation, 9(2), 165–193. https://doi.org/10.1016/j.jag.2006.05.003

6. Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3

7. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

8. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

9. IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/9781009157896

10. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620. https://doi.org/10.1126/science.1204531

11. Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indices. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486. https://doi.org/10.1109/36.377948

12. Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242. https://doi.org/10.1098/rspl.1895.0041

13. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0

Similar Articles

You may also start an advanced similarity search for this article.