ANALYSIS OF WORLD EXPERIENCES IN STUDYING THE IMPACT OF URBANIZATION ON THE ENVIRONMENT
Main Article Content
Abstract
This study explores the growing relevance of research on urban environmental conditions by utilizing data from internationally recognized scientific databases. As urbanization continues to reshape landscapes worldwide, understanding its ecological implications has become a critical area of investigation. To assess the current state of knowledge, a comprehensive bibliometric analysis was conducted, examining a total of 635 thematic articles that include key terms such as "Urban," "Environment," "GIS," and "Remote Sensing." These articles were sourced from high-impact journals and academic repositories, ensuring a robust dataset for analysis.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
How to Cite
References
R. Gupta and A. Kumar, “Urban Heat Island research using remote sensing: A bibliometric review with special reference to India,” Urban Clim., vol. 61, p. 102403, Jun. 2025, doi: 10.1016/j.uclim.2025.102403.
[2] W. Xu et al., “A Review of Applying Drones and Remote Sensing Technology in Mangrove Ecology,” Forests, vol. 16, no. 6, Art. no. 6, Jun. 2025, doi: 10.3390/f16060870.
[3] T. Zhang et al., “Adaptability analysis and model development of various LS-factor formulas in RUSLE model: A case study of Fengyu River Watershed, China,” Geoderma, vol. 439, p. 116664, Nov. 2023, doi: 10.1016/j.geoderma.2023.116664.
[4] M. L. van Toor, A. Davranche, G. Delaunay, C. Murgue, J. Waldenström, and C. Arzel, “An evaluation of global LULC maps for the estimation of habitat use of a declining migratory waterbird along its flyway,” Biol. Conserv., vol. 307, p. 111152, Jul. 2025, doi: 10.1016/j.biocon.2025.111152.
[5] B. He et al., “Analysis of atmospheric pollution transport using aerosol optical depth remote sensing data and the optical flow method,” Atmospheric Pollut. Res., vol. 16, no. 3, p. 102415, Mar. 2025, doi: 10.1016/j.apr.2025.102415.
[6] N. Yoshihara, “ArcGIS-based protocol to calculate the area fraction of landslide for multiple catchments,” MethodsX, vol. 10, p. 102064, Jan. 2023, doi: 10.1016/j.mex.2023.102064.
[7] S. Halder and S. Bose, “Comparative study on remote sensing-based indices for urban ecology assessment: A case study of 12 urban centers in the metropolitan area of eastern India,” J. Earth Syst. Sci., vol. 133, no. 2, p. 100, May 2024, doi: 10.1007/s12040-024-02321-3.
[8] L. Zhang, Q. Liu, J. Wang, T. Wu, and M. Li, “Constructing ecological security patterns using remote sensing ecological index and circuit theory: A case study of the Changchun-Jilin-Tumen region,” J. Environ. Manage., vol. 373, p. 123693, Jan. 2025, doi: 10.1016/j.jenvman.2024.123693.
[9] X. Yang et al., “Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China,” Environ. Pollut., vol. 226, pp. 143–153, Jul. 2017, doi: 10.1016/j.envpol.2017.03.079.
[10] C.-C. Chen, Y.-R. Wang, F.-C. Wang, Y.-S. Shiu, C.-F. Wu, and T.-H. Lin, “Estimating monthly NO2, O3, and SO2 concentrations via an ensemble three-stage procedure with downscaled satellite remote sensing data and ground measurements,” J. Hazard. Mater., vol. 480, p. 136392, Dec. 2024, doi: 10.1016/j.jhazmat.2024.136392.
[11] I. N. Hidayati, R. Suharyadi, and P. Danoedoro, “Environmental Quality Assessment of Urban Ecology based on Spatial Heterogeneity and Remote Sensing Imagery,” KnE Soc. Sci., pp. 363–379, Aug. 2019, doi: 10.18502/kss.v3i21.4981.
[12] J. Xu, H. Lindqvist, Q. Liu, K. Wang, and L. Wang, “Estimating the spatial and temporal variability of the ground-level NO2 concentration in China during 2005–2019 based on satellite remote sensing,” Atmospheric Pollut. Res., vol. 12, no. 2, pp. 57–67, Feb. 2021, doi: 10.1016/j.apr.2020.10.008.
[13] J. Chang et al., “Estimation of carbon sequestration capacity of urban green infrastructure by fusing multi-source remote sensing data,” Int. J. Appl. Earth Obs. Geoinformation, vol. 141, p. 104643, Jul. 2025, doi: 10.1016/j.jag.2025.104643.
[14] N. Chen, G. Cheng, J. Yang, H. Ding, and S. He, “Evaluation of Urban Ecological Environment Quality Based on Improved RSEI and Driving Factors Analysis,” Sustainability, vol. 15, no. 11, Art. no. 11, Jan. 2023, doi: 10.3390/su15118464.
[15] N. Setiawan, M. Yudinugroho, W. Ni’immallaili Hadining, A. J. Dentalisya, R. Jaladara, and F. F. K. Imroah, “Investigating ground deformation and SO2 emissions of the November 2020 Ili Lewotolo Eruption (Indonesia) using NSBAS InSAR and Sentinel-5P,” Geomatica, vol. 77, no. 1, p. 100056, Jul. 2025, doi: 10.1016/j.geomat.2025.100056.
[16] S. Sarkar, H. Manna, S. K. Roy, M. Dolui, and M. Hossain, “Synergizing remote sensing and ecological indicators (RSEIs) for evaluating ecological environmental quality (EEQ) in Asansol Municipal Corporation: an integrated approach,” Environ. Monit. Assess., vol. 196, no. 7, p. 631, Jun. 2024, doi: 10.1007/s10661-024-12793-x.
[17] S. Abdurakhmonov et al., “Conventional and current approaches of urban mapping and geodetic base formulation for establishing demographic processes database: Tashkent, Uzbekistan,” E3S Web Conf., vol. 497, p. 02028, 2024, doi: 10.1051/e3sconf/202449702028.
[18] B. Muslimbekov, N. Teshaev, S. Abdurakhmonov, and O. Gaybulloev, “Monitoring Trends of SO2 level Using Time-Series Sentinel-5 Images Based on Google Earth Engine,” E3S Web Conf., vol. 563, p. 03068, 2024, doi: 10.1051/e3sconf/202456303068.
[19] L. Chen, S. Shen, C. Song, and M. Zhao, “Estimating the urban ecological quality on the Qinghai–Tibet Plateau using a spatiotemporal remote sensing ecological index,” Ecol. Front., May 2025, doi: 10.1016/j.ecofro.2025.05.006.
[20] M. Conedera, M. Tonini, L. Oleggini, C. Vega Orozco, M. Leuenberger, and G. B. Pezzatti, “Geospatial approach for defining the Wildland-Urban Interface in the Alpine environment,” Comput. Environ. Urban Syst., vol. 52, pp. 10–20, Jul. 2015, doi: 10.1016/j.compenvurbsys.2015.02.003.
[21] H. Tian, C. Xie, M. Zhong, Y. Ye, R. Zhou, and D. Zhao, “Urban tree carbon storage estimation using unmanned aerial vehicles remote sensing,” Urban For. Urban Green., vol. 107, p. 128755, May 2025, doi: 10.1016/j.ufug.2025.128755.
[22] Y. Liu, P. Panakkal, S. Dee, G. Balakrishnan, J. Padgett, and A. Veeraraghavan, “ISLAND: Interpolating Land Surface Temperature using land cover,” Remote Sens. Appl. Soc. Environ., vol. 36, p. 101332, Nov. 2024, doi: 10.1016/j.rsase.2024.101332.
[23] Y. Li and T. Nigh, “GIS-based prioritization of private land parcels for biodiversity conservation: A case study from the Current and Eleven Point Conservation Opportunity Areas, Missouri,” Appl. Geogr., vol. 31, no. 1, pp. 98–107, Jan. 2011, doi: 10.1016/j.apgeog.2010.02.006.
[24] S. Abdurakhmonov, S. Ochilov, S. Tukhtamishev, O. Urokov, U. Berdikulov, and G. Azzamov, “Cartographic modeling of demographic processes using remote sensing data,” E3S Web Conf., vol. 497, p. 02030, 2024, doi: 10.1051/e3sconf/202449702030.
[25] N. Teshaev, B. Makhsudov, I. Ikramov, and N. Mirjalalov, “Advances and Prospects in Machine Learning for GIS and Remote Sensing: A Comprehensive Review of Applications and Research Frontiers,” E3S Web Conf., vol. 590, p. 03010, 2024, doi: 10.1051/e3sconf/202459003010.