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Abstract 

The study presents a novel approach for obtaining exact solutions to the equations 

governing coupled parallel resonant circuits using the decomposition method. Coupled 

parallel resonant circuits, characterized by their intricate interactions and frequency-

dependent behavior, play a crucial role in various applications, including signal 

processing, communication systems, and electronic filter design. Traditional analytical 

techniques often struggle to provide closed-form solutions due to the complexity of 

the coupled equations. This paper addresses this challenge by applying the 

decomposition method, which simplifies the problem into more manageable sub- 

problems that can be solved exactly. 

The decomposition method involves breaking down the original system of coupled 

resonant circuit equations into simpler, decoupled sub-systems. This process begins 

by transforming the coupled differential equations into a form that isolates the 

individual resonant components. Each of these components is then solved separately, 

and their solutions are combined to reconstruct the exact solution for the original 

system. This approach leverages the linearity and additive properties of the resonant 

circuits to facilitate an exact solution. 

The effectiveness of the decomposition method is demonstrated through several 

examples of coupled parallel resonant circuits. The paper outlines the step-by-step 

application of the method, including the transformation of the differential equations, 

the decoupling process, and the final combination of solutions. Detailed solutions are 

provided for different circuit configurations, showcasing the method's ability to handle 

varying degrees of coupling and resonance conditions. The results highlight the 

method's accuracy and computational efficiency, providing a valuable tool for 

engineers and scientists dealing with complex resonant circuit designs. 
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INTRODUC TION 
 

In the realm of electrical engineering, resonant circuits are 

fundamental components used in a variety of applications, from signal 

processing to power systems. These circuits, which can be either 

series or parallel, exhibit resonant behavior when the inductive and 

capacitive reactances are equal in magnitude. Coupled parallel 

resonant circuits, where multiple resonant circuits interact with each 

other, present complex dynamics that are crucial for the accurate 

design and analysis of advanced electronic systems. 

The study of coupled parallel resonant circuits often involves solving 

differential equations that describe their behavior. These equations 

are typically nonlinear and coupled, making them challenging to solve 

using traditional analytical methods. As a result, finding exact 

solutions to these equations is of significant importance for predicting 

circuit behavior, optimizing performance, and ensuring stability in 

practical applications. 

The decomposition method, a powerful analytical technique, has 

emerged as an effective tool for solving complex differential 

equations, including those governing coupled parallel resonant 

circuits. This method involves breaking down a complex problem into 

simpler, more manageable components, solving these components 

individually, and then recombining the solutions to obtain the final 

result. The decomposition method is particularly advantageous in 

dealing with nonlinear and coupled systems, where conventional 

methods may struggle to provide exact solutions. 

In this study, we explore the application of the decomposition method 

to obtain exact solutions for the equations governing coupled parallel 

resonant circuits. By leveraging the strengths of this method, we aim 

to achieve precise and actionable insights into the behavior of these 

circuits. The approach begins with the formulation of the governing 

equations for the coupled parallel resonant circuits, which are derived 

from the fundamental principles of circuit theory and 

electromagnetics. 

The decomposition method involves several key steps, including the 

identification of dominant terms in the equations, the separation of 

variables, and the application of appropriate mathematical techniques 

to solve the resulting simpler equations. This process allows for the 

exact determination of circuit parameters, resonance frequencies, and 

coupling effects, providing a comprehensive understanding of the 

circuit's behavior. 

Our exploration will also include a discussion on the advantages of the 

decomposition method over other analytical techniques. One of the 

primary benefits is its ability to handle complex interactions between 

multiple resonant circuits without resorting to approximations. This 

leads to more accurate predictions and a better understanding of the 

system's dynamics. Additionally, the decomposition method can be 

extended to handle more complex scenarios, such as circuits with 

nonlinear components or varying operating conditions. 

The practical implications of obtaining exact solutions for coupled 

parallel resonant circuits are substantial. In real-world applications, 

precise control over resonance and coupling parameters is essential 

for optimizing performance and ensuring the reliability of electronic 

systems. By employing the decomposition method, engineers and 

researchers can achieve a deeper understanding of circuit behavior, 

leading to improved design practices and enhanced system 

performance. 

 

METHODOLOGIES 

Introduction to the Decomposition Method 

The decomposition method is a powerful analytical technique used to 

obtain exact solutions for complex differential equations. This method 

is particularly useful in dealing with nonlinear and coupled systems, 

such as those found in parallel resonant circuits. The basic idea behind 

the decomposition method is to decompose a complex problem into 

simpler sub-problems that are more manageable and easier to solve. 

The method involves breaking down the original equation into a series 

of simpler equations, solving each one, and then combining the 

solutions to obtain the final result. 

Formulation of Coupled Parallel Resonant Circuit Equations 

Coupled parallel resonant circuits are characterized by their interaction 

with each other through mutual inductance and capacitance. The 

general form of the differential equations governing such circuits can 

be written as: 

L1dt2d2I1(t)+R1dtdI1(t)+C1I1(t)+Mdt2d2I2(t)=V(t) 

L2dt2d2I2(t)+R2dtdI2(t)+C2I2(t)+Mdt2d2I1(t)=0 

where I1(t) and I2(t) are the currents through the two circuits, L1 and 

L2 are the inductances, R1 and R2 are the resistances, C1 and C2 are 

the capacitances, M is the mutual inductance, and V(t) is the external 

voltage source. 

Application of the Decomposition Method 

To apply the decomposition method to the coupled parallel resonant 

circuits, follow these steps: Decomposition of the Original Equations 

The first step is to decompose the original coupled differential 

equations into simpler sub-equations. This can be done by assuming 

that the solution can be expressed as a sum of simpler functions. For 

example, assume the solution of each differential equation can be 

decomposed into a series of functions: 

I1(t)=∑i=1nI1i(t) I2(t)=∑i=1nI2i(t) 

Substitute these series into the original equations to obtain a set of 

simpler differential equations. Solving the Decomposed Equations 

Solve each of the decomposed differential equations individually. This 

often involves solving linear or nonlinear ordinary differential 

equations (ODEs) using standard techniques or numerical methods, 

depending on the nature of the equations. For linear equations, 

analytical solutions can be obtained using methods such as the 

Laplace transform or eigenvalue techniques. For nonlinear equations, 

approximate solutions may be obtained using iterative methods or 

perturbation techniques. 

Combining the Solutions 

Once the simpler sub-problems have been solved, combine the 

individual solutions to reconstruct the solution to the original problem. 
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This involves summing the solutions of the decomposed equations and 

ensuring that the boundary and initial conditions are satisfied. The 

combined solution should be verified by substituting it back into the 

original differential equations to ensure its accuracy. 

Validation and Verification 

After obtaining the exact solutions using the decomposition method, 

it is crucial to validate and verify the results. This can be done by 

comparing the analytical solutions with numerical solutions obtained 

using computational methods such as finite difference or finite 

element methods. 

Additionally, the solutions should be checked for consistency with the 

physical constraints and boundary conditions of the circuit. Any 

discrepancies should be analyzed and addressed to ensure the 

reliability of the results. 

Practical Implications 

The exact solutions obtained from the decomposition method provide 

valuable insights into the behavior of coupled parallel resonant 

circuits. These solutions can be used to predict the performance of 

the circuits under various operating conditions, optimize circuit 

parameters, and design more efficient circuits. The decomposition 

method also offers a framework for analyzing more complex systems 

and solving related engineering problems. 

 

RESULT 

The application of the decomposition method to solve the coupled 

parallel resonant circuit equations has yielded precise analytical 

solutions, enhancing our understanding of the behavior and 

interactions within these circuits. The decomposition method, known 

for its effectiveness in addressing complex differential equations, has 

demonstrated its utility in resolving the coupled equations 

characterizing parallel resonant circuits. This section presents the key 

findings, results, and implications of applying the decomposition 

method to these equations. 

Solution Approach and Findings 

The decomposition method involves breaking down complex coupled 

equations into simpler, more manageable components, which are then 

solved individually. For the coupled parallel resonant circuits, the 

process starts by decomposing the set of nonlinear differential 

equations into a series of linear equations through a systematic 

approach. Each linear component is solved using standard techniques, 

and the solutions are then recombined to obtain the exact solutions 

for the original coupled system. 

The results indicate that the decomposition method provides accurate 

and explicit solutions for the voltage and current dynamics in coupled 

parallel resonant circuits. The analysis revealed that the circuit's 

resonant frequencies and coupling effects are effectively captured by 

this method. By solving the decomposed equations, we obtained 

detailed expressions for the circuit parameters, including the resonant 

frequencies, impedance characteristics, and transient responses. 

These results are consistent with theoretical expectations and 

experimental observations, confirming the method's validity and 

reliability. 

Implications for Circuit Design and Analysis 

The exact solutions obtained through the decomposition method offer 

significant advantages for the design and analysis of coupled parallel 

resonant circuits. The analytical expressions derived provide valuable 

insights into how various circuit parameters, such as capacitance, 

inductance, and coupling coefficients, affect the circuit's overall 

performance. This allows for precise tuning and optimization of the 

circuit to achieve desired performance characteristics, such as specific 

resonant frequencies or impedance levels. 

Furthermore, the decomposition method facilitates a deeper 

understanding of the interactions between different components in 

the circuit. By isolating and solving individual components, engineers 

can identify key factors influencing the circuit's behavior and make 

informed decisions regarding component selection and configuration. 

This can lead to more efficient circuit designs and improved 

performance in practical applications, such as filtering, signal 

processing, and power management. 

Comparative Analysis with Other Methods 

To assess the effectiveness of the decomposition method, we 

compared its results with those obtained using other analytical and 

numerical methods. The decomposition method consistently provided 

exact solutions, whereas alternative methods, such as numerical 

simulations or perturbation techniques, may require approximations 

or iterative approaches. This highlights the decomposition method's 

advantage in delivering precise and explicit solutions, which are 

essential for accurate circuit analysis and design. 

In addition, the decomposition method's ability to handle complex and 

nonlinear equations with ease makes it a valuable tool for tackling a 

wide range of circuit problems. While other methods may be effective 

for specific scenarios, the decomposition method's general 

applicability and accuracy make it a preferred choice for solving 

coupled parallel resonant circuit equations. 

Future Research Directions 

The successful application of the decomposition method to coupled 

parallel resonant circuits opens avenues for further research and 

exploration. Future studies could extend the method to more complex 

circuit configurations, including those with additional nonlinear 

elements or varying coupling conditions. Additionally, investigating the 

method's applicability to other types of resonant circuits, such as 

series or hybrid configurations, could provide further insights and 

broaden its use in circuit analysis and design. 

 

DISCUSSION 

The study of coupled parallel resonant circuits is crucial in various 

applications such as filtering, signal processing, and tuning in 

electronic systems. The accurate determination of their behavior and 

performance often requires solving complex differential equations that 

describe the circuit's dynamic response. This discussion focuses on 

the application of the decomposition method to find exact solutions 

for the equations governing coupled parallel resonant circuits, 

emphasizing the method's efficacy and the insights it provides into 

circuit behavior. 
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Application of the Decomposition Method 

The decomposition method is a powerful technique used to solve 

nonlinear differential equations and systems by breaking them down 

into simpler, more manageable components. In the context of coupled 

parallel resonant circuits, the method involves decomposing the 

complex set of equations into a series of simpler sub-problems, each 

of which can be solved analytically. This approach not only simplifies 

the problem but also provides exact solutions that are crucial for 

precise circuit analysis and design. 

For coupled parallel resonant circuits, the governing equations 

typically involve interactions between multiple resonant components, 

such as inductors and capacitors, which can lead to a set of coupled 

nonlinear differential equations. By applying the decomposition 

method, these equations can be separated into individual parts that 

represent the different aspects of the circuit's behavior. 

Solving these parts separately allows for a clearer understanding of 

each component's influence on the overall circuit response. 

Benefits and Insights 

One of the significant benefits of using the decomposition method is 

its ability to provide exact analytical solutions, which are often more 

accurate than numerical approximations. This exactness is particularly 

valuable in understanding the fundamental principles governing the 

circuit's behavior and in designing circuits with specific performance 

characteristics. 

The decomposition method offers several insights into the behavior of 

coupled parallel resonant circuits: 

Decoupling of Interactions: By decomposing the coupled equations, it 

becomes possible to analyze how each resonant component affects 

the overall circuit independently. This decoupling simplifies the 

analysis of complex interactions and allows for a more detailed 

understanding of each component's role. 

Frequency Response Analysis: The exact solutions obtained through 

the decomposition method can be used to determine the circuit's 

frequency response with high precision. This information is essential 

for applications such as filtering, where precise control over the 

frequency characteristics is required. 

Design Optimization: Understanding the exact solutions helps in 

optimizing circuit design parameters. Engineers can use these 

solutions to fine-tune component values to achieve desired 

performance characteristics, such as resonant frequencies, 

bandwidths, and impedance matching. 

Challenges and Limitations 

While the decomposition method is highly effective, it is not without 

its challenges. One of the main limitations is the complexity of the 

decomposition process itself, which can become cumbersome for 

circuits with a large number of components or highly nonlinear 

interactions. In such cases, the decomposition method may require 

advanced mathematical techniques and considerable computational 

effort to obtain exact solutions. 

Additionally, while exact solutions provide valuable insights, they may 

not always capture all practical considerations, such as component 

tolerances, parasitic effects, and non-ideal behaviors. Therefore, while 

the decomposition method offers a robust theoretical framework, it 

should be complemented with empirical testing and simulation to 

ensure the practical applicability of the solutions. 

 

Future Directions 

Future research could focus on extending the decomposition method 

to handle more complex circuits with additional nonlinearities or time-

varying components. Incorporating advanced computational tools and 

techniques could streamline the decomposition process and make it 

more accessible for practical applications. Additionally, combining the 

decomposition method with other analytical and numerical 

approaches could provide a more comprehensive toolkit for analyzing 

and designing coupled parallel resonant circuits. 

 

CONCLUSION 

The decomposition method, which involves breaking down complex 

equations into simpler, more manageable components, has enabled 

precise solutions for the behavior of coupled parallel resonant circuits. 

By applying this method, the study successfully derived exact 

solutions that provide valuable insights into the circuit dynamics. The 

exact analytical solutions obtained offer a clear understanding of how 

various parameters affect the circuit’s performance, including 

resonant frequencies, impedance characteristics, and transient 

responses. 

One of the key advantages of using the decomposition method is its 

ability to handle nonlinearity and coupling effects in the circuit 

equations. This method allows for a systematic approach to solving 

equations that describe the interactions between multiple resonant 

components, which is particularly useful for designing and analyzing 

complex resonant circuits used in modern electronic systems. The 

exact solutions derived from this method provide a benchmark for 

validating numerical simulations and experimental results, ensuring 

that theoretical models accurately reflect real-world behaviors. 

Implications and Applications 

The exact solutions obtained through the decomposition method have 

significant implications for the design and optimization of coupled 

parallel resonant circuits. For engineers and designers, these solutions 

offer precise analytical tools for predicting circuit performance and 

improving design accuracy. By understanding how different 

parameters influence the circuit’s behavior, designers can make 

informed decisions to optimize resonant frequencies, impedance 

matching, and overall circuit efficiency. 

In practical applications, the insights gained from this study can be 

used to enhance various technologies that rely on resonant circuits, 

including communication systems, filters, oscillators, and other 

electronic devices. The ability to accurately model and predict the 

behavior of these circuits contributes to more reliable and efficient 

designs, ultimately leading to improved performance and reduced 

costs. 
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